Abstract

The Apache Point Observatory Galactic Evolution Experiment (**APOGEE**) of the Sloan Digital Sky Survey IV has measured high resolution (**R~22,500**), near-infrared (**1.51-1.70 µm**) spectra for nearly 100,000 stars within the Milky Way Galxy [1]. While the APOGEE experiment was originally designed to research Galactic structure by targeting bright stellar populations in the disk, we have focused attention on the lesser-studied subset of faint and low-temperature late-M and early-L dwarfs, with the objective of characterizing their chemical abundances. Using spectral sythesis routines from the **Starfish package** [2], we report preliminary determinations of Teff, logg, and [Fe/H] for a small sample of spectra using PHOENIX models [3]. We also compare these PHOENIX fits to low-resolution data from the SpeX Prism Library [4] fitted by BT-Settl models.

Background

SOURCES - our sample is comprised of the coldest stars observed by APOGEE; **25 M5 - L3** spectral type dwarf targets were chosen by cross-matching with four very low mass star catalogs (see poster by Aganze et. al.).

CHALLENGE many overlaping features for spectra of this low temperature and high resolution make it difficult to derive chemical abundances, so spectral synthesis is preferable over equivalent width measurment [5].

[Fe/H] - Iron abundance

Spectral Synthesis with Starfish

MODELING TOOLS - Models were generated using the **Starfish package**; a routine which uses Principal Conponent Analysis and forward modeling to synthesize best fitting parameters from a library of pre-computed model grids. [2]

PHOENIX MODELS - We used a library of PHOENIX grid models [3] ranging over

Teff: [2300, 3000] **logg:** [4.5, 5.5] **[Fe/H]:** [-1.5, 0.0].

FITTING - Markov Chain Monte Carlo (MCMC) optimization was run for 10,000 samples on six separate bands; also optimized radial (**vz**) & rotational velocity (vsini).

÷*.