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MOTIVATION Examples of morphological classifications of periodically varying stars:

1.3 v v v v 1.03 1.3 , , , , 1.4

—
co
—_
—

The Transiting Exoplanet Survey Satellite (TESS): ~85% sky coverage, high
(1-3%) photometric precision, w/ timing baselines 27-351 days of ~400k
sources (2 min cadence) and 20-150 million sources (30 min cadence).
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Population statistics (of stellar properties & orbital kinematics) from a _
comprehensive catalog of TESS EBs across Galactic environments are 5 Cepheld
essential benchmarks for improving stellar evolution models,
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determining distances to callibrate the cosmic distance ladaer, b | -
and tracing Galactic structure, among other applications. ST o0
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Goal: Use supervised machine learning to accurately identify/ S &
classity eclipsing binaries and determine precise periods. A R . S e
M :TH O DS Algol Binary (EA) [ Lyrae Binary (EB) W UMa Binary (EW)
(1) Period Finding / Phase Folding (2) Dynamic Time Warping (DTW) (3) Classification
Ho N Approaches to time series classification w/ supervised learning: I-NN Confusion Matrix
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» Period fdavsl DTW [2]: distance metric for computing similarity between the shape i
g . of two time series. For time series {X,,...Xy} & =M PULS
| | | \ | {Y;,...Yn}, algorithm has three steps O(NM): -
£09) 209 | (1) Compute cost matrix (shown right) where
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%0,7_ %0,7_ (2) Use dynarmc programmmg to solve for | | : R .
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optimally align the two series in time. - A' Reference Label
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Phase Phase (3) DTW distance Is the sum of path values. Confusion matrix comparing test labels and true labels
. LS: P =1.4808 days PDM: P = 2.9685 days DTW has been used extensively for time series classification in machine 2154 1-Nearest Neighbor (1 NN). Classitier using @
earning literature [1] (on speech recognition, computer vision, biostats, ~ t@NNg sample of 996 sources with labels from the
Initial period search using Lomb-5cargle periodogram, etc.), but has seen few applications on astronomical time series. ASAS-SN all-sky survey of variable stars [4] and light
a variant of Fourier Transform applicable to unevenly curves from TESS Cycle 1. Between two class labels,
sampled time-series data, -xample optimal DTW path alignments (using dtaidistance [5]); eclipsing binary types are distinguished from other
ower distance is better: periodic variables with a false-positive rate of 5%

and false-negative rate of 2%.

Period precision improved using Phase Dispersion DTW: 1968 0. _DTW: 155

Viinimization: x* between light curve points and a 100pt
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rolling-median smooth is minimized for the best period /
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-UTURE WORK

using scipy.optimize around factors of LS period. D
A Address limitations:
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* Ensemble of classifiers
Apply classification routine to find new EBs
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